1,562 research outputs found

    Secondary radiation from the Pamela/ATIC excess and relevance for Fermi

    Full text link
    The excess of electrons/positrons observed by the Pamela and ATIC experiments gives rise to a noticeable amount of synchrotron and Inverse Compton Scattering (ICS) radiation when the e^+e^- interact with the Galactic Magnetic Field, and the InterStellar Radiation Field (ISRF). In particular, the ICS signal produced within the WIMP annihilation interpretation of the Pamela/ATIC excess shows already some tension with the EGRET data. On the other hand, 1 yr of Fermi data taking will be enough to rule out or confirm this scenario with a high confidence level. The ICS radiation produces a peculiar and clean "ICS Haze" feature, as well, which can be used to discriminate between the astrophysical and Dark Matter scenarios. This ICS signature is very prominent even several degrees away from the galactic center, and it is thus a very robust prediction with respect to the choice of the DM profile and the uncertainties in the ISRF.Comment: 5 pages, 3 figures; v2: improved figures, enlarged discussion on the gamma signal and data; to appear in ApJ

    Adaptive spectral identification techniques in presence of undetected non linearities

    Full text link
    The standard procedure for detection of gravitational wave coalescing binaries signals is based on Wiener filtering with an appropriate bank of template filters. This is the optimal procedure in the hypothesis of addictive Gaussian and stationary noise. We study the possibility of improving the detection efficiency with a class of adaptive spectral identification techniques, analyzing their effect in presence of non stationarities and undetected non linearities in the noiseComment: 4 pages, 2 figures, uses ws-procs9x6.cls Proceedings of "Non linear physics: theory and experiment. II", Gallipoli (Lecce), 200

    Radio constraints on dark matter annihilation in the galactic halo and its substructures

    Get PDF
    Annihilation of Dark Matter usually produces together with gamma rays comparable amounts of electrons and positrons. The e+e- gyrating in the galactic magnetic field then produce secondary synchrotron radiation which thus provides an indirect mean to constrain the DM signal itself. To this purpose, we calculate the radio emission from the galactic halo as well as from its expected substructures and we then compare it with the measured diffuse radio background. We employ a multi-frequency approach using data in the relevant frequency range 100 MHz-100 GHz, as well as the WMAP Haze data at 23 GHz. The derived constraints are of the order =10^{-24} cm3 s^{-1} for a DM mass m_chi=100 GeV sensibly depending however on the astrophysical uncertainties, in particular on the assumption on the galactic magnetic field model. The signal from single bright clumps is instead largely attenuated by diffusion effects and offers only poor detection perspectives.Comment: 12 pages, 7 figures; v2: some references added, some discussions enlarged; matches journal versio

    From an insulating to a superfluid pair-bond liquid

    Full text link
    We study an exchange coupled system of itinerant electrons and localized fermion pairs resulting in a resonant pairing formation. This system inherently contains resonating fermion pairs on bonds which lead to a superconducting phase provided that long range phase coherence between their constituents can be established. The prerequisite is that the resonating fermion pairs can become itinerant. This is rendered possible through the emergence of two kinds of bond-fermions: individual and composite fermions made of one individual electron attached to a bound pair on a bond. If the strength of the exchange coupling exceeds a certain value, the superconducting ground state undergoes a quantum phase transition into an insulating pair-bond liquid state. The gap of the superfluid phase thereby goes over continuously into a charge gap of the insulator. The change-over from the superconducting to the insulating phase is accompanied by a corresponding qualitative modification of the dispersion of the two kinds of fermionic excitations. Using a bond operator formalism, we derive the phase diagram of such a scenario together with the elementary excitations characterizing the various phases as a function of the exchange coupling and the temperature.Comment: 10 pages, 5 figure

    Computational Thinking in Mathematics and Computer Science: What Programming Does to Your Head

    Get PDF
    How you think about a phenomenon certainly influences how you create a program to model it. The main point of this essay is that the influence goes both ways: creating programs influences how you think. The programs we are talking about are not just the ones we write for a computer. Programs can be implemented on a computer or with physical devices or in your mind. The implementation can bring your ideas to life. Often, though, the implementation and the ideas develop in tandem, each acting as a mirror on the other. We describe an example of how programming and mathematics come together to inform and shape our interpretation of a classical result in mathematics: Euclid\u27s algorithm that finds the greatest common divisor of two integers

    Field-induced Orbital Patterns in Ferromagnetic Layered Ruthenates

    Full text link
    We study the evolution of orbital patterns in ferromagnetic layered ruthenates due to the competition of Coulomb interactions, compressive c axis and orthorhombic distortions in the presence of a polarizing orbital field coupled to the angular momentum. By means of the exact diagonalization on a 2x2 cluster and a cluster embedded analysis where inter-plaquette interaction is treated on mean field level, we determine the ground-state phase diagram. Specifically, we demonstrate that, via the activation of two or three of t_2g local orbital configurations, an external field applied along different symmetry directions can lead to inequivalent orbital correlated states. Starting from an antiferro-orbital pattern, for the easy axis case an orbital ordered phase is induced, having strong next nearest neighbors ferro-orbital correlations. Otherwise, a field applied along the hard axis leads a reduction of local orbital moment in a way to suppress the orbital order.Comment: 11 page

    High Energy Neutrinos with a Mediterranean Neutrino Telescope

    Get PDF
    The high energy neutrino detection by a km^3 Neutrino Telescope placed in the Mediterranean sea provides a unique tool to both determine the diffuse astrophysical neutrino flux and the neutrino-nucleon cross section in the extreme kinematical region, which could unveil the presence of new physics. Here is performed a brief analysis of possible NEMO site performances.Comment: 4 pages, 3 figures, Proceedings of the 30th ICRC 200

    Disentangling neutrino-nucleon cross section and high energy neutrino flux with a km^3 neutrino telescope

    Get PDF
    The energy--zenith angular event distribution in a neutrino telescope provides a unique tool to determine at the same time the neutrino-nucleon cross section at extreme kinematical regions, and the high energy neutrino flux. By using a simple parametrization for fluxes and cross sections, we present a sensitivity analysis for the case of a km^3 neutrino telescope. In particular, we consider the specific case of an under-water Mediterranean telescope placed at the NEMO site, although most of our results also apply to an under-ice detector such as IceCube. We determine the sensitivity to departures from standard values of the cross sections above 1 PeV which can be probed independently from an a-priori knowledge of the normalization and energy dependence of the flux. We also stress that the capability to tag downgoing neutrino showers in the PeV range against the cosmic ray induced background of penetrating muons appears to be a crucial requirement to derive meaningful constraints on the cross section.Comment: 10 pages, 28 figure

    On line power spectra identification and whitening for the noise in interferometric gravitational wave detectors

    Get PDF
    In this paper we address both to the problem of identifying the noise Power Spectral Density of interferometric detectors by parametric techniques and to the problem of the whitening procedure of the sequence of data. We will concentrate the study on a Power Spectral Density like the one of the Italian-French detector VIRGO and we show that with a reasonable finite number of parameters we succeed in modeling a spectrum like the theoretical one of VIRGO, reproducing all its features. We propose also the use of adaptive techniques to identify and to whiten on line the data of interferometric detectors. We analyze the behavior of the adaptive techniques in the field of stochastic gradient and in the Least Squares ones.Comment: 28 pages, 21 figures, uses iopart.cls accepted for pubblication on Classical and Quantum Gravit
    • …
    corecore